☰
Python Across Disciplines
with Python + AI Tool   
×
Table of Contents

1.1.   Introduction 1.2.   About the Author & Contact Info 1.3.   Book Conventions 1.4.   What (Who) is a Programmer? 1.5.   Programming Across Disciplines 1.6.   Foundational Computing Concepts 1.7.   About Python 1.8.   First Steps 1.8.1 Computer Setup 1.8.2 Python print() Function 1.8.3 Comments
2.1. About Data 2.2. Data Types 2.3. Variables 2.4. User Input 2.5. Data Structures (DS)         2.5.1. DS Concepts         2.5.2. Lists         2.5.3. Dictionaries         2.5.4. Others 2.6. Files         2.6.1. Files & File Systems         2.6.2. Python File Object         2.6.3. Data Files 2.7. Databases
3.1. About Processing 3.2. Decisions         3.2.1 Decision Concepts         3.2.2 Conditions & Booleans         3.2.3 if Statements         3.2.4 if-else Statements         3.2.5 if-elif-else Statements         3.2.6 In-Line if Statements 3.3. Repetition (a.k.a. Loops)         3.3.1  Repetition Concepts         3.3.2  while Loops         3.3.3  for Loops         3.3.4  Nested Loops         3.3.5  Validating User Input 3.4. Functions         3.4.1  Function Concepts         3.4.2  Built-In Functions         3.4.3  Programmer Defined Functions 3.5. Libraries         3.5.1  Library Concepts         3.5.2  Standard Library         3.5.3  External Libraries 3.6. Processing Case Studies         3.6.1  Case Studies         3.6.2  Parsing Data
4.1. About Output 4.2. Advanced Printing 4.3. Data Visualization   4.4  Sound
  4.5  Graphics
  4.6  Video
  4.7  Web Output
  4.8  PDFs & Documents
  4.9  Dashboards
  4.10  Animation & Games
  4.11  Text to Speech

5.1 About Disciplines 5.2 Accounting 5.3 Architecture 5.4 Art 5.5 Artificial Intelligence (AI) 5.6 Autonomous Vehicles 5.7 Bioinformatics 5.8 Biology 5.9 Bitcoin 5.10 Blockchain 5.11 Business 5.12 Business Analytics 5.13 Chemistry 5.14 Communication 5.15 Computational Photography 5.16 Computer Science 5.17 Creative Writing 5.18 Cryptocurrency 5.19 Cultural Studies 5.20 Data Analytics 5.21 Data Engineering 5.22 Data Science 5.23 Data Visualization 5.24 Drone Piloting 5.25 Economics 5.26 Education 5.27 Engineering 5.28 English 5.29 Entrepreneurship 5.30 Environmental Studies 5.31 Exercise Science 5.32 Film 5.33 Finance 5.34 Gaming 5.35 Gender Studies 5.36 Genetics 5.37 Geography 5.38 Geology 5.39 Geospatial Analysis ☯ 5.40 History 5.41 Humanities 5.42 Information Systems 5.43 Languages 5.44 Law 5.45 Linguistics 5.46 Literature 5.47 Machine Learning 5.48 Management 5.49 Marketing 5.50 Mathematics 5.51 Medicine 5.52 Military 5.53 Model Railroading 5.54 Music 5.55 Natural Language Processing (NLP) 5.56 Network Analysis 5.57 Neural Networks 5.58 Neurology 5.59 Nursing 5.60 Pharmacology 5.61 Philosophy 5.62 Physiology 5.63 Politics 5.64 Psychiatry 5.65 Psychology 5.66 Real Estate 5.67 Recreation 5.68 Remote Control (RC) Vehicles 5.69 Rhetoric 5.70 Science 5.71 Sociology 5.72 Sports 5.73 Stock Trading 5.74 Text Mining 5.75 Weather 5.76 Writing
6.1. Databases         6.1.1 Overview of Databases         6.1.2 SQLite Databases         6.1.3 Querying a SQLite Database         6.1.4 CRUD Operations with SQLite         6.1.5 Connecting to Other Databases
Built-In Functions Conceptss Data Types Date & Time Format Codes Dictionary Methods Escape Sequences File Access Modes File Object Methods Python Keywords List Methods Operators Set Methods String Methods Tuple Methods Glossary Index Appendices   Software Install & Setup
  Coding Tools:
  A.  Python    B.  Google CoLaboratory    C.  Visual Studio Code    D.  PyCharm IDE    E.  Git    F.  GitHub 
  Database Tools:
  G.  SQLite Database    H.  MySQL Database 


Python Across Disciplines
by John Gordon © 2023

Table of Contents

Table of Contents  »  Chapter 2 : Data (Input) : Data Types : Floating Points

Floating Points

Subscribe Contact


Contents

Overview

A floating point values are used to represent real numbers that can accommodate a wide range of values. Floating-point numbers are essentially the computer's way of representing fractions and decimals, especially when the range of values is too large or the precision requirements are too fine for integer representation.

Precision & Scale

In programming with floating-point numbers, precision and scale are two important concepts that define the format and accuracy of these numbers.

Examples of floating points in Python:

Question

What are the precision and scale values for the following floating point numbers?

  1. 10.5
  2. 3.14
  3. 23456.78901
  4. 4554545545.89988998989898

Mathematical Operations

In Python, we can perform mathematical calculations using Floating Points using operators which are symbols to represent valid arithmatic operations for float values. Here are the first of these that we will explore:

Operation Operator Description & Examples
Addition
+

Combining two or more numeric values into a single total sum.

print(10.5 + 20.75)
print(10.5 + 20.75 + 30.0)
print(10.5 + 20.75 + 30.0 + 40.25 + 50.5 + 60.5)
Subtraction
-

Taking away one numeric value (or quantity) from another to find the difference between them.

print(10.5 - 20.75)
print(10.5 - 20.75 - 30.0)
print(10.5 - 20.75 - 30.0 - 40.25 - 50.5 - 60.5)
Multiplication
*

Adding a number a certain number of times to produce a product.

print(10.5 * 20.75)
print(10.5 * 20.75 * 30.0)
print(10.5 * 20.75 * 30.0 * 40.25 * 50.5 * 60.5)
Division
/

Splitting a number into a specified number (the divisior) of equal parts. In computing, division by zero will cause an error because division by zero is mathematicaly undefined.

print(10.5 / 2)
print(10.5 / 3)
print(10.5 / 0)  # Note that this example produces an error as the divisor cannot be zero because division by zero is undefined.
Floor (Integer) Division
//

The same as division (above), however the result will be an truncated down to the nearest whole number that is less than or equal to the actual result.

print(10.5 // 2)
print(10.5 // 3)
            
Modulus
%

Same as division (above), however it determins if there is a remainder in the result of a division operation.

print(10 % 2)  # Note the result is zero because there is no remainder after the division
print(10.5 % 3)  # Note the result is 1 because there is a remainder after the division
Exponentiation
**

This operation raises the first number (the base) to the power of the second number (the exponent). The exponent signifies how many times the base is multiplied by itself.

print(10.5 ** 2)
print(10.5 ** 2.5)
print(10.5 ** 3)
print(10.5 ** 100)

Combining Operations

Any of the mathematical operators can be used in more complex (combined) mathematical calculations. Here are some examples:

print(10.5 + 20.5 - 15.5 * 5.5)
print(10.5 + (100.5 / 2.5))  # See the note about the use of parenthses below
print(10.5 ** (2.5 * 30.5)))  # See the note about the use of parenthses below

Order of Operations

In Python, the order of operations for mathematical operators follows the conventional mathematical hierarchy, which is consistent with the rules of arithmetic that are typically taught in mathematics (often remembered by the acronym PEMDAS/BODMAS). For the operators you've listed (+, -, *, /, //, %, and **), the order of precedence is as follows:

Parenthses

In Python, like math, we can use parenthses ( ) to isolate and group factors of our equations to override andn control the order of operations. See the examples in the Combining Operations section above.







© 2023 John Gordon
Cascade Street Publishing, LLC